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1. Key risk driver evidence, data input, 
methodology 

1.1. Total pollution incidents 

1.1.1. Evidence and data inputs 

Pollution risk drivers 

Analysis determining the drivers of pollution incidents for all WaSCs using the Environment Agency (EA) 

data on pollution incidents is shown below: 

 

Naturally, pollutions incidents are asset driven. When an asset – such as a pumping station, rising main, or 

treatment work – fails, pollution incidents may occur. As a result, any notional company consideration must 

not be biased by the asset health of any one company. However, there is no robust dataset of asset health 

available for the sector which could inform a more granular notional company analysis that incorporates 

asset health. Resultingly, our notional company analysis focuses on the relationship between precipitation as 

a key driver of pollution incidents.  

Using our data, the key drivers of pollution incidents are as follows. Data bars are coloured individually to 

show the four key drivers – electrical, mechanical, sewer blockage, and rising main – as well as all other 

incident types which we grouped into “Other” in further analysis.  

-- 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

Other water industry premises

Storm tank

Water treatment works (water supply)

Surface water outfall

Combined sewer overflow

Rising main

Water distribution system (water supply)

Sewage treatment works

Pumping station

Foul sewer

Total pollution incidents

Figure 1:Sector total incidents by cause (2020-2022) 
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We analysed the relationship between the four key incident types and precipitation. Precipitation data was 

sourced from our equipment to measure rainfall across the region covered by Southern Water. 

Our analysis separately considered incidents occurring in 2020-2022 and those occurring in 2023 due to the 

pollution incident reduction plan (PIRP) we undertook in 2023 which materially reduced the number of 

incidents. The improvement plan focused on wastewater treatment works, pumping stations and rising 

mains. This plan would have a distorting impact on the statistical model unless the improvement plan was a 

model input.1  

Resultingly, the robustness of any statistical analysis using data combined across 2020-2023 would be 

impacted by the improvement plan. Instead, we (1) used 2020-2022 data to inform correlations and 

regression modelling due to the longer time period compared with only 2023, and (2) used 2023 data as a 

cross-check and to understand the impact asset improvement has on the pollution incident-precipitation 

relationship.  

 
1 Pollution Incident Reduction Plan (southernwater.co.uk) 
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Figure 2: Proportion of pollution incidents (2020-2022) by cause 

https://www.southernwater.co.uk/media/5305/pirp-2021-final.pdf
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Figure 3: a,b,c,d: Common pollution incident causes vs rainfall 

There are clear positive correlations between rainfall and pollution incidents caused by electrical failures, 

mechanical failures, and rising mains issues. This is due to high levels of rainfall increasing the load on 

machinery which leads to failure. In contrast, incidents caused by sewer blockage display a negative 

correlation with precipitation as these occur most frequently when there is insufficient water volume to wash 

away potential blockages.  

We combined all other incident types into a single “Other” category and found a 0.55 correlation with 

precipitation. Resultingly, we found 83% of incident causes to have a positive relationship with precipitation, 

with the remaining 17% being sewer collapses with a negative correlation. 

We performed similar analysis using 2023 data to cross check the relationship between precipitation and 

incidents under a scenario of improved asset health. The relationships derived using 2023 data are 

comparable to those using 2020-2022 data, with the exception of sewer blockage incidents. These incidents 

display a positive correlation with precipitation in 2023, in contrast to the negative relationship previously 

determined. This is due to the efficacy of the improvement plan throughout the year, with total incidents 

decreasing and reducing the explanatory power of rainfall.  
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Figure 4: Common pollution incidents causes vs rainfall (2023 data) 

Whilst the relationships between rainfall and incidents were derived with our data, they are highly probable to 

be applicable to all companies in the sector given they hold true both before and after the targeted asset 

improvement plan. Resultingly, the relationships derived are appropriate for application to the notional 

company and indicate its exposure to penalties relating to the pollution incidents ODI is highly dependent on 

precipitation, which is outside of the control of the company. 

The link between rainfall and pollution incidents may not only relate to general level of rainfall. We have 

considered the following rainfall factors which may influence incidents: 

1) General level of rainfall - captured as the daily average rainfall. 

2) Surges in rainfall – periods of drought drying up the ground followed by large amounts of rainfall may 
cause incidents as the ground cannot readily absorb rainwater. 

3) Persistence of rainfall – long periods of rainfall will increase ground water and cause flooding and 
further strain on wastewater assets. 

The effect of general level of rainfall and persistent rainfall is captured in the above correlations as we have 

taken a daily average for rainfall. Thus factors (1) and (3) and measured together in our analysis. 

To consider factor (2), the impact of surges, we defined a surge where there is a 3-day period where rainfall 

is at least 2.0x higher than the average from the previous 14-day period. An example is shown in the below 

figure. 
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The below graph and table demonstate how the two precipitation variables - (1) daily average rainfall per 

month which captures general and persistent rainfall, and (2) surges in rainfall – evolve over 2020-2022.  

 

 

  2020 - 2022   

Precipitation variable Max Min Mean Total 

Daily ave. rainfall 8.2 0.1 2.4 n/a 

Surges 5.0 0.0 1.1 40.0 

Table 1: Rainfall data summary 

 

We performed correlation analysis between each incident root cause and surges and found rising electrical 

issues to have a correlation of 0.13.  

Forward looking precipitation data 

We accessed Met Office publicly available UKCP18 climate projections to gather potential daily rainfall 

between 2025-2030 under RCP8.5 for Southern Water regions.  
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Figure 5: Rainfall surge definition 

Figure 6: Precipitation data 
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1.1.2. Methodology 

Determining geographical areas for precipitation data 

For a notional company in the southeast of England, the geographical areas served have been assumed to 

align with ours. There are a total of 119,166 postcodes served by 381 wastewater sites across 212 districts2. 

We therefore grouped each postcode district using the K-means clustering algorithm based on the 

coordinates3 of the district centroids. For each group, we determined the district which best represented the 

centre point of that clustered. Note, district coordinates were rounded to the nearest 5km to coincide with the 

granularity at which MET office weather data is available. This is demonstrated below where each district is 

represented in blue, with the centroid clusters in orange. 

 

 

This approach facilitates using the central district as a representative area for which weather data can be 

obtained. To obtain the weather data for each grid individually is beyond the scope of this analysis and given 

long-term weather data is likely to have minimal variance between two adjacent areas, using a grouping’s 

central district is an appropriate proxy. 

1.1.3. Pollution and precipitation data transformation 

Analysis on the relationship between pollution incidents and precipitation could be performed at a cluster 

level. However, at this granularity incidents will have other strong explanatory factors, namely asset health, 

which are more applicable to the actual company. Therefore, our notional company analysis takes the 

average weather data across the MET office grids described above and compares these to pollution 

incidents. The preceding methodology for determining grids for which to obtain precipitation data ensures an 

appropriate proxy for the whole area served by Southern Water. 

Pollution incidents were divided into three distinct groups based on the relationship between root cause and 

precipitation, as demonstrated in Pollution Risk Drivers section. These groups were as follows: 

 
2 A district is defined as the leading part of a postcode in either Letter-Letter-Number or Letter-Letter-Number-Number 
format. E.g., the postcodes GU6 8JE and BN26 5TA are in districts GU6 and BN26 respectively. 
3 Our analysis used the Easting Northing coordinate system to align to the precipitation scenario data available from the 
MET office. Note, this is a cartesian coordinate system – i.e. a 2D project – in contrast to the 3D geodesic projection of 
latitude-longitude. 

Figure 7: Map of MET office regions covered by Southern Water 
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 Group Root causes 
% Total 

Incidents 

Correlation 
with Average 

Rainfall 

Correlation 
with Surges 

1 Explained by level of rainfall 
Mechanical, Rising mains issues, 
Other 

54% 0.75 -0.03 

2 
Explained by level of rainfall and 
surges 

Electrical 29% 0.71 0.13 

3 
Not directly explained by rainfall 
factors 

Sewer blockage 17% -0.36 0.36 

Table 2: Pollution risk driver groups 

 

As group 3 does not have a direct link to precipitation it was excluded from the scope of this analysis. The 

factors in scope explain 83% of total incidents. 

We performed analysis collating data on a monthly basis, i.e., pollution incidents per month, average daily 

rainfall in month, and total surges per month. This was due to the number of incidents. Smaller time periods, 

e.g. a week, may yield more precise analysis however sacrifice statistical accuracy where there are 

insufficient incidents occurring during each period from which to derive robust relationships. 

1.1.4. Regression 

We performed regression analysis on groups 1 and 2 using 2021 and 2022 data. We excluded 2023 due to 

the asset improvement programme having a significant influence on the number of incidents as discussed in 

Pollution risk drivers section. We used only those precipitation variables found to be materially explanatory 

as independent variables, i.e. average rainfall for group 1 and both average rainfall and surges for group 2. 

 Group Constant 
Average 
Rainfall 

Rainfall Surges R2 

1 Explained by level of rainfall 8.9 3.2 N/A 0.57 

2 Explained by level of rainfall and surges 3.9 1.9 0.2 0.49 

Table 3: Pollution regression coefficients 

 

The R2 values resulting from the regression imply there are other explanatory factors for pollution incidents, 

however in combination with the correlations between incidents and precipitation demonstrate there is a 

clear relationship. The positive regression coefficients demonstrate this relationship is positive, i.e. that 

increased rainfall is likely to increase the number of pollution incidents.  

We have used this regression model with the precipitation data per the MET office’s forward-looking scenario 

for 2025-2030 to determine the expected impact on pollution incidents under that scenario. As the MET 

office data represents a base case, we also considered a number of precipitation scenarios and determined 

the implied pollutions impact for the notional company. Scenarios were informed by analysis of historic data 

and are as below. The percentages derived were applied to the MET office base scenario. 

• More rainfall. We used the P10 scenario from the CMIP6 ensemble climate model projections, 
available from the world bank, to determine a plausible scenario of a 15% increase in rainfall in 
AMP84. We also considered half this impact, a 7.5% increase in total rainfall. 

• More seasonal rainfall. Rainfall is expected to increase in the winter and decrease in the summer5. 
To estimate a plausible increase in winter rainfall, we the CMIP6 historic data set from 1950-2014 
and determined the P10 rainfall to be 25% than the long-term average. We therefore considered (1) 
a scenario of 25% increase in winter rainfall in AMP8 and, (2) a scenario with half the rainfall 
increase, 12.5%, during AMP8 winters. 

• More surges. To capture increased volatility of rainfall in the scenario analysis, we used days with 
>50mm of rainfall from the CMIP6 SSP585 P10 scenario as a proxy for surge patterns. We derived a 

 
4 Climate Change Knowledge Portal Data Catalogue, World Bank (climateknowledgeportal.worldbank.org)  
5 Changing climate risk in the UK: A multi-sectoral analysis using policy-relevant indicators - ScienceDirect, section 2.6 

https://cckpapi.worldbank.org/cckp/v1/cmip6-x0.25_timeseries_prpercnt_timeseries-prpercnt-annual-mean_annual_2015-2100_median,p10,p90_ssp119_ensemble_all_mean/GBR?_format=json
https://www.sciencedirect.com/science/article/pii/S2212096320300553#s0095
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57% increase in surges from AMP7 to AMP8. We therefore used 50% and 25% in our scenario 
analysis. 

Under each scenario, we calculated a % change in incidents and applied this to the standardised ODI target 

for AMP8 to derive a £m impact using both the incentive rate of £1.45m per the Draft Determination. 

Financial impacts were then scaled to be presented as a proportion of notional company AMP8 regulated 

equity.  

Note that this methodology for calculating financial impact assumes baseline performance as the ODI target. 

In reality, given these targets represent substantial reductions from AMP7 levels a baseline 

underperformance is likely and therefore the financial impact of these scenarios would be worse than those 

presented in this analysis. 

1.2. Named storms 

1.1.5. Evidence and data inputs 

Until FY23, pollution incidents as a result of named storms were excluded from reportable pollution incidents. 

However, this exclusion has now been revoked such that any future incidents as a result of named storms 

will contribute to a water companies ODI performance. This creates additional risk for the company. 

We submitted a Freedom of Information request to the Environment Agency regarding incident exclusions 

due to named storms across the water sector6, with the following results. Note, all incidents were category 3. 

Storm / Company Arwen (2021) Eunice (2022) Franklin (2023) 

Anglian Water (ANH) 0 1 0 

Welsh Water (WSH) 0 0 0 

Northumbrian Water (NES) 40 0 0 

Severn Trent (SVE) 22 0 0 

South West Water (SWB) 0 0 0 

Southern Water (SRN) 0 85 0 

Thames Water (TMS) 0 7 0 

United Utilities (UUW) 12 3 1 

Wessex Water (WSX) 0 7 0 

Yorkshire Water (YKY) 0 1 0 

Total 74 104 1 

Table 4: AMP7 Pollution incidents excluded due to being from named storms 

 

To understand the relationship between incidents due to these storms and the geographical areas affected, 

we used the MET office reports for Arwen7 and Eunice8. Storm Franklin was excluded due to only resulting in 

“Yellow” warnings in England and Wales, with Northern Ireland seeing “Amber” warnings9 and therefore no 

material pollution incidents. See the below charts, compared with the company area map10, which show 

clearly: 

• Storm Arwen most severely impacted the northeast coast of England, an area predominantly 
served by NES. “Yellow” warnings were issued for the northwest and parts of the midlands, hence 
some incidents incurred by SVE and UUW. As this storm did not impact the south of England, 
Yorkshire or Wales no resulting pollution incidents were reported by the other WaSCs. 

 
6 This data is available to be used per the Open Government Licence. 
7 "Storm Arwen, 26 to 27 November 2021", Met Office (2021) 
8 "Storms Dudley, Eunice and Franklin, February 2022", Met Office (2022) 
9 "Storm Franklin named", Met Office (2022) 
10 Contact details for your water company - Ofwat 

https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2021/2021_07_storm_arwen.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2022/2022_02_storms_dudley_eunice_franklin.pdf
https://www.metoffice.gov.uk/about-us/press-office/news/weather-and-climate/2022/storm-franklin-named
https://www.ofwat.gov.uk/households/your-water-company/contact-companies/
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• Storm Eunice most severely impacted the southeast and part of the southwest of England. Most of 
the areas served by Southern Water were subject to “Red” warnings which resulted in 85 pollution 
incidents. Other companies experienced incidents; however these were to a lesser extent due to 
their geographical location. However, TMS and WSX were the next most impacted companies as 
they operate in the area impacted by Storm Eunice. Notably less than Southern Water’s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

These data demonstrate the exposure to named storms is a notional company issue, with 8 out of the 10 

WaSCs experiencing pollution incidents as a result. As incidents due to named storms are no longer 

excluded from ODI reporting in 2023, this increases the risk to which the notional company is exposed. 

1.1.6. Methodology 

Per the freedom of information request submitted, pollution incidents in 2021 and 2022 were most notably 

caused by storms Arwen (74 incidents) and Eunice (104 incidents) respectively. These storms impacted 8 of 

the 10 WaSCs. Our analysis considers only those companies with operational area materially impacted by 

Arwen and Eunice, and we have therefore omitted the incidents incurred by companies ANH, WSH, SWB, 

and YKY. We calculated the average incidents incurred due to named storms: 

Company Storm Pollution Incidents 

Northumbrian Water (NWL) Arwen 40 

Severn Trent (SVE) Arwen 22 

Southern Water (SRN) Eunice 85 

Thames Water (TMS) Eunice 7 

United Utilities (UUW) Arwen 12 

United Utilities (UUW) Eunice 3 

Wessex Water (WSX) Eunice 7 

Average  25 

Table 5: Total pollution incidents caused by Storm Arwen and Storm Eunice 

This indicates, on average, named storms result in 25 pollution incidents. However, this likely understates 

the true risk exposure as TMS, UUW and WSX only had small operational areas impacted by Arwen and 

Eunice. These storms resulted in “Red” warnings for material amounts of NES and SRN’s operational areas 

– the average incidents incurred for these companies was 63. These averages represent a proxy for notional 

company performance in the event of a named storm as these incident data are across six companies with 

diversified asset health and operational strategies.  

From the sector data we derived two scenarios, (1) a moderate named storm impact as represented by the 

total average of 25 incidents, and (2) a severe named storm impact where the operating region is 

substantially covered by a “Red” warning, represented by the average incident count of 63 from NES and 

SRN during Arwen and Eunice respectively. 

 
  

Storm Arwen Storm Eunice 

Figure 8: Impact of named storms Arwen and Eunice 
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As part of the PR24 business plan submission, we proposed targeted total incidents of 581 across AMP8. 

For the notional company, a named storm could increase this by 25 incidents under scenario 1, a 4.3% 

increase, or alternatively by 63, a 10.8% increase, if “Red” warnings are in place for most the southeast 

region as in scenario 2. 

The incentive rate on pollution incidents proposed by Ofwat is £1.45m per pollution incident per 10,000km of 

sewers. Average sewer length in AMP8 is expected to be 40,300 km. Therefore, 27 incidents relating to 

named storms translated into 6.2 standardised incidents with a £m impact of £9.7m. In the severe scenario 

where most of the southeast region is covered by a “Red” warning, such a named storm could induce 15.6 

standardised incidents with a financial impact of £22.6m. As a proportion of notional company AMP8 

regulated equity these financial impacts are 0.06% and 0.13% of RoRE respectively. 

1.3. Serious pollution incidents 

1.1.7. Evidence and data inputs 

We obtained data from the EA on pollution incidents across the WaSCs in England and found a total of 145 

serious incidents between 2020 and 2022 with an annual average per WaSC of 5 serious incidents. Whilst 

serious pollution incidents may have relationships with actual company characteristics such as asset health, 

this indicates that serious pollution incidents are a notional company issue.  

Whilst serious pollution incidents are relatively infrequent, they are difficult to predict and therefore difficult to 

mitigate. This is due to high variability in (1) geographic location, as demonstrated by the below map 

showing serious pollution incidents from 2020-2023 across the region served by Southern Water; and (2) 

asset type, as demonstrated by EA data on serious pollution incidents in the sector from 2020-2022. Note, 

we considered geographical location of Southern Water incidents only due to unavailability of sector data. 

 

 

  

   

 
   

 

   

Figure 9: Map of Southern Water serious pollution incidents 2020-2022 
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 Serious pollution incidents (2020-2022) 

Company Foul sewer 
Sewage 

treatment 
works 

Rising main 
Pumping 
station 

Other 
Total 

incidents 

Anglian 10 8 10 4 3 35 

Northumbrian 0 2 0 0 0 2 

Severn Trent 1 2 0 2 1 6 

South Western 6 2 4 1 0 13 

Southern 6 3 4 8 0 21 

Thames 18 15 7 0 2 42 

United Utilities 0 1 0 0 0 1 

Wessex 10 1 1 0 2 14 

Yorkshire 2 1 4 3 1 11 

Total 53 35 30 18 9 145 

Median 6 2 4 1 1 13 

Table 6: Serious pollution incidents across the water sector, 2020-2022 

 

We used our data to determine the months in which serious incidents most frequently occur, as presented in 

the below graph. Our data has been used as a proxy for the notional company in absence of granular 

monthly data for the sector. This suggests serious incidents occur most frequently during summer and 

autumn, and least frequently in winter. There is a positive relationship with temperature and a negative 

relationship with rainfall, i.e. serious pollution incidents are more likely to occur when temperatures are 

higher and rainfall is lower. 

 

 

1.1.8. Methodology 

Whilst statistical analysis is limited by the small population of serious incidents, we performed correlations 

analysis using our pollutions data. Company specific data was used as sector data is not available with the 

required granularity. We would expect the relationship between weather and serious incidents to hold true for 

the notional company. 

Correlations between serious incidents and rainfall were calculated on a quarterly basis between 2020-2022 

and were determined to be -0.33 with rainfall and 0.64 with maximum temperature. Hotter weather and less 

rainfall results in less dilute pollutants. 
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Figure 10: Serious Pollution Incidents by Month (Southern Water, 2020 - 2023) 
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To understand how operational improvement may improve performance on the serious pollutions ODI, we 

compared our performance on total pollution incidents and serious pollution incidents between 2020-2022 

with 2023 where we implemented an asset improvement plan mainly focusing on pumping stations and rising 

main calming. We used our data in lieu of the required information on improvement plans undertaken by 

other companies in the sector. 

Company Total Pollution Incidents Serious Pollution Incidents 

2020-2022 annual average performance 377 5 

2023 performance 225 - 234 (subject to EA decision) 12 

Table 7: Impact of PIRP on serious pollution incidents 

 

This demonstrates that whilst our improvement initiative materially improved total pollution incident, there 

was no such improvement to serious pollutions and in fact we experienced more in 2023. This could be 

because serious incidents occurred from assets or at sites which weren’t subject to improvement, however 7 

serious incidents in 2023 were at water pumping stations or rising mains, asset types in scope of the 

improvement plan. Overall, this suggests that serious pollutions are very difficult to mitigate with operational 

improvements and therefore regulatory mitigations may be required. 

1.4. Correlations 

1.1.9. Evidence and data inputs 

The correlation analysis on PCs was undertaken based on our own data across nearly all PCs. Data was 

consistently sourced from AMP7 performance data at the lowest level of frequency feasible: weekly, monthly, 

or quarterly. Some data was available geographically and we grouped this by county: Hampshire, Isle of 

Wight, Kent, Sussex and to a limited degree Surrey and Wiltshire.  

Bathing water quality, river water quality, and discharge permit compliance were excluded from this analysis 

as the reporting is only available on an annual basis. Further analysis is needed to determine how discharge 

permit compliance could be analysed on an incident basis given the different ways a site level failure can 

occur that are not consistent across sites.  

We would reasonably expect a relationship between discharge permit compliance and river water quality 

however these metrics were excluded from this analysis. Ofwat defines river water quality as the per cent 

reduction in P-level found in site effluent. The relationship is based on the permit levels for phosphorous in 

place at the baseline year 2019/20 which determined the available scope for reducing the effluent P-level 

and an estimate for reduced phosphorous entering rivers from other efforts with third parties11. This analysis 

was included in the Risk Technical Annex citing that sector average P-level permits per wastewater 

treatment site was 1.22mg/L12 and the AMP8 permit levels are expected to tighten further for the sector. For 

reference, our permit levels for phosphorous are tightening by 25% in 2025 ahead of AMP8. This degree of 

tightening will drive the performance on river water quality given the baseline year is 2019/20 and complying 

with the permits would likely result in achieving the river water quality PC target as well. To achieve lower P-

levels, companies could increase ferric dosing to remove greater amounts of phosphorous from the effluent 

and improve performance on river water quality while increasing the risk they breach the permit level of iron 

in the effluent. The makes the relationship between discharge permit compliance and river water quality 

more dynamic and dependent on both ferric and P-level permits, the techniques available to remove 

phosphorous and level of phosphorous and iron present in the influent. This dynamic requires further 

analysis and may impact notional company performance. However, our analysis has left this correlation a nil 

in the absence of supporting data. 

 
11 Performance commitment definition - River water quality (ofwat.gov.uk) p3 
12 srn57-risk redacted.pdf (southernwater.co.uk) p66  

https://www.ofwat.gov.uk/wp-content/uploads/2022/12/River_water_quality_PC_definition.pdf
https://www.southernwater.co.uk/media/9100/srn57-risk_redacted.pdf


DD Representation – Risk Appendix  

 
 

 
16 

The below table indicates the lowest level frequency of reporting incorporated into the correlation analysis for 

each PC and whether the information could be split geographically into county or remained at the regional 

level (i.e. the Southern Water region): 

 

Performance commitment  Frequency of report Geographic level data 

Pollution Incidents Weekly County 

Serious Pollution Incidents Weekly County 

Internal sewer flooding Weekly Region 

Sewer Collapse Weekly Region 

External Sewer Flooding Weekly Region 

Water Supply Interruptions Weekly County 

Leakage Weekly County 

PCC Monthly Region 

CRI Weekly County 

Storm Overflows Weekly County 

CMEX Quarterly Region 

DMEX Quarterly Region 

Business demand Monthly Region 

Unplanned outage Weekly County 

Customer contacts on water quality  Weekly County 

Mains repairs Weekly County 

Table 8: PC data availability 

We then considered the units for the correlation analysis. Because not all the ODI definitions necessarily 

lend themselves well to correlation analysis, we identified the underlying driver of the PC performance and 

modelled these. The below table summarises where we made these simplifying adjustments to the data to 

allow for correlation analysis: 

 

Performance commitment  
Correlation 
analysis input 

PC definition 

Leakage Ml/day Per cent reduction from baseline of the three-year average 

PCC Ml/day Per cent reduction from baseline of the three-year average 

Storm Overflows Number of spills Number of spills / CSO + unmonitored spills adjustment 

CMEX CES score CES + CSS score 

Business demand Ml/day Per cent reduction from baseline of the three-year average 

Table 9: Adjustments to PCs to facilitate correlations analysis 

 
Leakage, PCC and business demand were not feasible to analyse as a three-year average given the limited 

data points and so was translated to actual leakage or consumption per day. The storm overflows 

unmonitored spill adjustment is not incident driven and added only as an annual figure. The adjustment is not 

related to the same underlying risk drivers as spills. Therefore, we excluded to avoid distorting the results. 

The CMEX score was decomposed into the CES and CSS, and we focused on the CES. The CSS is likely 

driven by customer service levels provided by our customer facing teams and not driven by the same risk 

factors as other PCs, while the CES score is driven by customers’ general perception of our business and is 

inherently related to our PC performance, especially environmental performance.  

Any other PCs with standardising metrics were unstandardised to facilitate this analysis. The standardised 

values did not create a material difference as most standardising adjustments (like km of sewer) remained 

relatively constant year to year. 
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Finally, we also considered average daily rainfall and average daily temperature in our analysis to better 

understand where PCs had common risk drivers. This data was sourced from weather stations we have 

around the southern water region. 

1.1.10. Methodology 

Once the data was formatted and arranged, we calculated the Pearson correlation coefficient between each 

PC for each time interval and geographic split. The results of the correlation analysis were considered for 

each combination of PC at each level of granularity available to understand the dynamics of the relationship. 

Then, we considered each relationship against a materiality threshold to eliminate low strength relationships 

that we felt were not sufficiently different from zero. The final results were then considered against the 

possible explanations from an operational perspective to justify the relationship was not due to coincidence 

in the data and that the actual company risk was not driving the relationship. The below provides further 

detail to each step of the analysis: 

1) The correlations were calculated at the quarterly, monthly, and weekly level plus the monthly by county 

level where possible. This resulted in 368 distinct correlation coefficients across 120 different 

relationships between any two PCs. 

2) All 120 combinations of PCs were then considered individually across all available frequency and 

geographical variations. For example the relationship between total pollutions incidents and serious 

pollutions incidents was considered as follows: 

 

Table 10: Frequency - Geographic split of correlations 

Given the relationship between total pollutions and serious pollutions is reasonably expected to be 

positive given that all serious pollutions are also total pollution incidents, we sought to break down the 

data to most granular level possible. Because one incident counts as both, the lowest possible 

geographical split and most frequent time interval would most accurately capture the relationship. In 

general, as most of the data was at the incident level and expected to coincide in both time and 

geography, this approach was applied to almost all relationships. 

While a correlation cannot be checked for statistical significance, we sought to validate the results of our 

analysis a variety of ways to ensure any correlations identified could withstand scrutiny from an informed 

third party and would be applicable to a notional company. Statistical significance can only be tested for 

predicted values and correlations do predict future values, rather indicate the direction and strength of 

the relationship between two variables. The following steps include those validations to increase the 

robustness of our results. 

3) Firstly, we applied a materiality threshold of +/-0.20 to eliminate weak relationships that we felt were 

difficult to justify as materially different from zero. This eliminated 57 correlations from our analysis. 

4) Then we considered the logical underpinning of the relationship from an operational perspective and 

validated each relationship with our internal team. Where there was no common risk driver or logical 

relationship between two PCs, we excluded these relationships regardless of the mathematical results. 

For example the DMEX score was not found to be logically related to any other PC from either a direct 

relationship or a common risk driver, and these results were excluded. This removed a further 49 

correlations.  

Frequency – Geographic split of correlation Correlation coefficient 

Quarterly – Region -0.40 

Monthly – Region -0.11 

Weekly – Region 0.08 

Quarterly – County  0.36 

Monthly – County 0.24 
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5) Finally, we analysed the remaining results with a logical underpinning that were materially different non-

zero and considered whether the actual company risk was influencing the relationship. The relationships 

excluded were as follows:  

a) CMEX / Water supply interruptions: given our performance on water supply interruptions it’s likely 

the strength of the relationship is influenced by our actual company performance. While customers 

likely do consider supply interruptions when completing the CES survey across the country, this is 

unlikely to make as material an impact as our data suggests due to our position in sector 

performance. Therefore, we excluded to remain conservative. 

b) PCC / Business demand: due to the Covid-19 pandemic PCC increased drastically and business 

demand decreased sharply as the government-imposed lockdowns preventing people from going 

into the office. This drove a strong negative correlation between PCC and business demand. Since 

we do not expect the relationship to hold in the future given the return to work we have excluded this 

relationship.  

The remaining relationships were considered valid for a notional company like Southern Water and were 

included in our analysis of notional company risk as such. More detail on each relationship can be found in 

the results subsection. 

 


